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Abstract—This paper considers the joint beamforming and
clustering design problem in a downlink network multiple-input
multiple-output (MIMO) setup, where the base-stations (BSs)
are connected to a central processor with rate-limited backhaul
links. We formulate the problem as that of devising a sparse
beamforming vector across the BSs for each user, where the
nonzero beamforming entries correspond to that user’s serving
BSs. Differing from the previous works, this paper explicitly
formulates the per-BS backhaul constraints in the network
utility maximization framework. In contrast to the traditional
utility maximization problem with transmit power constraint
only, the additional backhaul constraints result in a discrete �0-
norm formulation, which makes the problem more challenging.
Motivated by the compressive sensing literature, we propose to
iteratively approximate the per-BS backhaul constraints using
a reweighted �1-norm technique and reformulate the back-
haul constraints as weighted per-BS power constraints. This
allows us to solve the weighted sum rate maximization problem
through a generalized weighted minimum mean square error
(WMMSE) approach. To reduce the computational complexity
of the proposed algorithm within each iteration, we propose
two additional techniques, iterative link removal and iterative
user pool shrinking, which dynamically decrease the potential
BS cluster size and user scheduling pool. Numerical results show
that the proposed algorithm can significantly improve the system
throughput as compared to the naive BS clustering strategy based
on the channel strength.

I. INTRODUCTION

Network multiple-input multiple-output (MIMO) is a
promising technique for improving the system performance of
future wireless cellular networks. In practice, network MIMO
system can be realized by connecting the base-stations (BSs)
to a central processor (CP) with high-speed backhaul links.
The ideal implementation of network MIMO system, where
all the BSs fully cooperate and each BS acquires the channel
state information (CSI) of the entire network, requires very
high backhaul capacities and is not practical. With finite-rate
backhaul links, the CP can share each user’s message with a
limited set of BSs (called BS cluster in this paper), which then
cooperatively serve the user through joint beamforming.

To determine the optimal BS clustering and joint beamform-
ing strategies for the downlink network MIMO system with
limited backhaul is not an easy task. First, as each user wants
to be served by the strongest BSs while each BS has a limit on
the number of users it can support, the optimal BS clustering
design involves a tradeoff between the user rates and the
backhaul capacities. The naive cluster selection scheme purely

based on the channel strength may lead to severely imbalanced
traffic load, especially in heterogeneous networks where the
macro-BSs usually have much higher transmit power than the
pico-BSs. Second, even with fixed BS clustering, finding the
optimal joint beamforming is also nontrivial since different
clusters for different users may overlap.

In this paper, we propose to jointly address the above two
issues by devising a sparse beamforming strategy across the
BSs for each user, where the nonzero beamforming entries
correspond to that user’s serving BSs. In contrast to [1]–
[4] which formulate the problem as radio resources mini-
mization under fixed user rate constraints, this paper focuses
on network utility maximization under given radio resources,
namely transmit power and backhaul capacities. We propose
an efficient algorithm to select the BS cluster for each user
dynamically and to design the corresponding beamforming
vector according to the given backhaul limits.

Utility maximization for the network MIMO system con-
sidered in existing literature mostly takes the limited backhaul
capacities into account implicitly by either fixing the BS
clusters [5]–[7] or adding the backhaul as a penalized term into
the objective function [8]–[10]. Specifically, [5] considers sum
rate maximization under fixed and non-overlapping clustering
scheme while [6] and [7] maximize a more general utility
function under potentially overlapping but predetermined BS
clusters. Dynamic clustering design is considered in [8] by
penalizing the objective function with an �2-norm approxima-
tion of the cluster size. Alternatively, [9] and [10] choose the
backhaul rate as the penalized term but solve the problem
heuristically. For fixed clustering scheme assumed in [5]–
[7], the backhaul consumption is only known afterwards
by evaluating the rates of user messages delivered in each
backhaul link. For dynamic clustering designs considered in
[8]–[10], one has to optimally choose the price associated with
each penalized term to ensure that the overall backhaul stays
within the budget, which is not easy.

In contrast to all the above existing works, the main
contribution of this paper is that we explicitly account for
the per-BS backhaul constraints in the overall network utility
maximization framework. Differing from the utility maxi-
mization problems in conventional wireless networks with
only power constraints, the additional backhaul constraints in
network MIMO system make the problem more challenging.
The backhaul consumption at a particular BS is a function
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Fig. 1: Network MIMO with per-BS backhaul constraints.

of not only the (continuous) user rates but also the (discrete)
number of associated users.

Motivated by the compressive sensing literature [11], this
paper casts the BS clustering problem as an �0-norm opti-
mization problem and proposes to iteratively approximate the
mixed continuous and discrete per-BS backhaul rate through
an �1-norm reweighting technique, which essentially refor-
mulates the per-BS backhaul constraints into weighted per-
BS power constraints. This novel approximation allows us to
apply a generalized weighted minimum mean square error
(WMMSE) approach [7] to solve the utility maximization
problem. The resulting algorithm efficiently determines the
optimal BS clustering and beamforming strategies jointly for
the network MIMO system with limited backhaul.

In order to further improve the efficiency of the proposed
algorithm, we propose two additional techniques, iterative link
removal and iterative user pool shrinking, which iteratively
exclude those BSs with negligible transmit power out of the
candidate cluster set for each user, and exclude those users
with negligible rates out of the user scheduling pool, respec-
tively. Simulation results show that the proposed algorithm can
fully utilize the limited backhaul resource and significantly im-
prove the system throughput as compared to the conventional
user-centric clustering scheme based on channel strength.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink cellular network with L BSs and K
users, where each BS has M transmit antennas while each
user has N receive antennas. Each BS l is connected to a CP
via a backhaul link with capacity limit Cl, l = 1, 2, · · · , L, as
depicted in Fig. 1. With linear transmit beamforming scheme,
the received signal at user k, denoted as yk ∈ C

N×1, k =
1, 2, · · · ,K, can be modeled as

yk = Hkwksk +
∑
j �=k

Hkwjsj + nk, (1)

where Hk ∈ C
N×Mt and wk ∈ C

Mt×1 = [w1
k,w

2
k, · · · ,wL

k ]
denote the CSI matrix and beamforming vector respectively

from all the Mt = LM transmit antennas1 to user k.
Suppose BS l is not part of user k’s serving cluster, then the
corresponding beamforming entries wl

k ∈ C
M×1 are set to

0. In this paper, we consider the case where each user has
only a single data stream for simplicity and assume that user
k’s message sk ∈ C is independent and identically distributed
according to CN (0, 1). Here, nk ∈ C

N×1 is the received noise
at user k and modeled as nk ∼ CN (0, σ2I).

We assume that the CP has access to all the users’ data and
has global CSI for designing the optimal sparse beamforming
vector wk. Once wk is determined, the CP transmits user k’s
message, along with the beamforming coefficients, to those
BSs corresponding to the nonzero entries in wk through the
backhaul links. In this paper, we assume that the channels are
slow varying and only consider the backhaul consumption due
to the user data sharing and ignore the backhaul required for
sharing CSI and delivering beamforming coefficients. Under
this assumption, the per-BS backhaul constraint can be cast in
the following weighted �0-norm format:∑

k

∥∥‖wl
k‖22

∥∥
0
Rk ≤ Cl, ∀l (2)

where Rk is the achievable rate for user k defined as

Rk = (3)

log

⎛
⎜⎝1 +wH

k HH
k

⎛
⎝∑

j �=k

Hkwjw
H
j HH

k + σ2I

⎞
⎠

−1

Hkwk

⎞
⎟⎠

Intuitively, the backhaul consumption at the lth BS is the
accumulated data rates of the users served by BS l. Here,∥∥‖wl

k‖22
∥∥
0

characterizes whether or not BS l serves user k:

∥∥‖wl
k‖22

∥∥
0
=

{
0, if ‖wl

k‖22 = 0
1, otherwise . (4)

This paper considers network utility maximization as the
objective. Among the family of utility functions, weighted
sum rate (WSR) has been widely applied to network control
and optimization problems. In this paper, we also adopt the
WSR utility but point out that the proposed scheme can be
readily extend to any utility function that holds an equivalence
relationship with the WMMSE minimization problem (see [12]
for a sufficient condition on the utility functions holding such
an equivalence).

With per-BS power and per-BS backhaul constraints, the
WSR maximization problem can be formulated as:

maximize
{wl

k}

∑
k

αkRk (5a)

subject to
∑
k

‖wl
k‖22 ≤ Pl, ∀l (5b)

∑
k

∥∥‖wl
k‖22

∥∥
0
Rk ≤ Cl, ∀l (5c)

1To simplify the notations, we assume that all the L BSs can potentially
serve each scheduled user. In practice, only the strongest few BSs around
each user need to be considered as the candidate serving BSs.
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where αk denotes the priority weight associated with user k,
Pl and Cl represent the transmit power budget and backhaul
capacity limit for BS l, respectively.

III. PROPOSED ALGORITHM

Conventional WSR maximization problem is a well-known
nonconvex problem, for which finding the global optimality is
already quite challenging even without the additional backhaul
constraint. This paper therefore focuses on solving for the
local optimum solution of the problem (5) only. Our main
contribution is a new way of dealing with the discrete �0-norm
constraint (5c).

In compressive sensing literature, nonconvex �0-norm objec-
tive is often approximated by the convex reweighted �1-norm
[11]. In this paper, we extend this idea to the �0-norm in the
constraint and approximate (5c) as∑

k

βl
kRk‖wl

k‖22 ≤ Cl (6)

where βl
k is a constant weight associated with BS l and user

k and is updated iteratively according to

βl
k =

1

‖wl
k‖22 + τ

, ∀k, l (7)

with some small constant regularization factor τ > 0 and
‖wl

k‖22 from the previous iteration.
Even with the above approximation, the optimization prob-

lem (5) with the backhaul constraint (5c) replaced by (6) is
still difficult to deal with due to the fact that the rate Rk in the
constraint is unknown. To address this difficulty, we propose
to solve the problem (5) iteratively with fixed rate R̂k in (6)
and update R̂k by the achievable rate Rk from the previous
iteration. Under fixed βl

k and R̂k, problem (5) now reduces to

maximize
{wl

k}

∑
k

αkRk (8a)

subject to
∑
k

‖wl
k‖22 ≤ Pl, ∀l (8b)

∑
k

βl
kR̂k‖wl

k‖22 ≤ Cl, ∀l (8c)

where the approximated backhaul constraint (8c) can be in-
terpreted as a weighted per-BS power constraint bearing a
resemblance to the traditional per-BS power constraint (8b).

Although the approximated problem (8) is still nonconvex,
we can reformulate it as an equivalent WMMSE minimiza-
tion problem in order to reach a local optimum solution.
The equivalence between WSR maximization and WMMSE
minimization is first established in [13] for MIMO broadcast
channel and later generalized to MIMO interfering channel in
[12] and MIMO interfering channel with partial cooperation
in [7]. It is not difficult to see that the generalized WMMSE
equivalence established in [12] also extends to the problem (8)
with the newly introduced weighted per-BS power constraint
(8c). We explicitly state the equivalence as follows:

Proposition 3.1 ( [12]): The WSR maximization problem
(8) has the same optimal solution with the following WMMSE
minimization problem:

minimize
{ρk,uk,wl

k}

∑
k

αk (ρkek − log ρk) (9)

subject to
∑
k

‖wl
k‖22 ≤ Pl, ∀l

∑
k

βl
kR̂k‖wl

k‖22 ≤ Cl, ∀l

where ρk denotes the MSE weight for user k and ek is the
corresponding MSE defined as

ek = E
[‖uH

k yk − sk‖22
]

(10)

= uH
k

⎛
⎝∑

j

Hkwjw
H
j HH

k + σ2I

⎞
⎠uk − 2Re{uH

k Hkwk}+ 1

under receiver uk ∈ C
N×1.

The advantage of solving the WSR maximization problem
(8) through its equivalent WMMSE minimization problem (9)
is that (9) is convex with respect to each of the individual
optimization variables. This crucial observation allows the
problem (9) to be solved efficiently through the block coordi-
nate descent method by iterating between ρk, uk and wk:

• The optimal MSE weight ρk under fixed wk and uk is
ρk = e−1

k , ∀k.
• The optimal receiver uk under fixed wk and ρk is the

MMSE receiver:

uk =

⎛
⎝∑

j

Hkwjw
H
j HH

k + σ2I

⎞
⎠

−1

Hkwk, ∀k. (11)

• The optimization problem to find the optimal transmit
beamformer wk under fixed uk and ρk is a quadratically
constrained quadratic programming (QCQP) problem,
which can be solved using standard convex optimization
solvers such as CVX [14].

A straightforward but computationally intensive way of
applying the above WMMSE algorithm to solve the original
problem (5) would involve two loops: an inner loop to solve
the approximated WSR maximization problem (8) with fixed
weight βl

k and rate R̂k, and an outer loop to update βl
k and

R̂k. Instead, we propose to combine these two loops into a
single loop and update the weight βl

k and rate R̂k inside the
WMMSE algorithm, as summarized in Algorithm 1.

Algorithm 1 has the same complexity order as the con-
ventional WMMSE algorithm since it only introduces two
additional steps 4 and 5 in each iteration in updating βl

k

and R̂k, which are both closed-form functions of the transmit
beamformers. The main computational complexity of Algo-
rithm 1 comes from the optimal transmit beamformer design
in Step 3, which is a QCQP problem as mentioned before, but
can also be equivalently reformulated as a second order cone
programming (SOCP) problem as we do in the simulation part
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Algorithm 1 Sparse Beamforming Design with Explicit Per-
BS Backhaul Constraints
Initialization: βl

k, R̂k,wk, ∀l, k;
Repeat:

1) Fix wk, ∀k, compute the MMSE receiver uk and the
corresponding MSE ek according to (11) and (10);

2) Update the MSE weight ρk = e−1
k , ∀k.

3) Find the optimal transmit beamformer wk under fixed
uk and ρk, ∀k.

4) Compute the achievable rate Rk according to (3), ∀k;
5) Update R̂k = Rk and βl

k according to (7), ∀l, k.
Until convergence

of this paper. The complexity of solving SOCP using interior-
point method is approximately O((KLM)3) [15].

To improve the efficiency of Algorithm 1 in each iteration,
in what follows, we further propose two techniques, iterative
link removal and iterative user pool shrinking. The former
aims at reducing the number of potential transmit antennas
LM serving each user while the latter is intended to decrease
the total number of users K to be considered in each iteration.

A. Iterative Link Removal

Similar to what we observed in [2], the transmit power from
some of the candidate serving BSs would drop down rapidly
close to zero as the iterations go on. By taking advantage
of this, we propose to iteratively remove the lth BS from
the kth user’s candidate cluster once the transmit power from
BS l to user k, i.e. ‖wl

k‖22, is below a certain threshold, say
−100dBm/Hz. This reduces the dimension of the potential
transmit beamformer for each user and reduces the complexity
of solving SOCP in Step 3 of Algorithm 1.

B. Iterative User Pool Shrinking

The WMMSE algorithm does user scheduling implicitly. We
observe from simulations that, it is beneficial for Algorithm 1
to consider a large pool of users in the iterative process.
However, to consider all the users in the entire network all the
time would incur significant computational burden. Instead,
we propose to check the achievable user rate Rk in Step 4
iteratively and ignore those users with negligible rates (below
some threshold, say 0.01 bps/Hz) during the next iteration. Our
simulations show that, after around 10 iterations, more than
half of the total users can be taken out of the consideration
with negligible performance loss to the overall algorithm.
This significantly reduces the total number of variables to be
optimized during the following iterations.

IV. SIMULATION RESULTS

In this section, numerical simulations are conducted to show
the effectiveness of the proposed algorithm. We consider a
7-cell wrapped around two-tier heterogeneous network with
the simulation parameters listed in Table I. Each cell forms
a regular hexagon with a single macro-BS located in the
center and 3 pico-BSs equally separated within the cell as

TABLE I: Simulation Parameters.

Cellular Hexagonal
Layout 7-cell wrapped-around

Channel bandwidth 10 MHz
Distance between cells 0.8 km

Num. of (macro-BSs, pico-BSs, users)/cell (1, 3, 30)
Num. of antennas/(macro-BS, pico-BS, user) (4, 2, 2)

Max. Tx power for (macro-BS, pico-BS) (43, 30) dBm
Antenna gain 15 dBi

Background noise −169 dBm/Hz
Path loss from macro-BS to user 128.1 + 37.6 log10(d)
Path loss from pico-BS to user 140.7 + 36.7 log10(d)

Log-normal shadowing 8 dB
Rayleigh small scale fading 0 dB

Reweighting function parameter τ = 10−10

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Macro BS
Pico BS
Mobile User
User 3 in Cell 2

Fig. 2: 7-cell wrapped around two-tier heterogeneous network.

illustrated in Fig. 2. To simplify the discussion, we set all the
macro-BSs to have equal backhaul constraints and likewise
for the pico-BSs. The backhaul constraints are denoted as
(Cmacro, Cpico) respectively. The proposed algorithm is simu-
lated under the power constraints listed in Table I with various
sets of (Cmacro, Cpico) backhaul constraints.

As indicated previously, instead of considering all the L
BSs in the entire network as the candidates serving each user,
in simulations we only consider the strongest Lc (Lc ≤ L)
BSs2 around each user as its candidate cluster. To illustrate
how the sparse beamforming vector is formed in the proposed
algorithm, we plot in Fig. 3 the power evolutions of the
strongest 8 BSs for the third user in the second cell as an
example, without removing any BS out of the candidate cluster
using the proposed iterative link removal technique. As we
can see, after around 20 iterations only the first and third
strongest BSs maintain at a reasonable transmit power level.
They eventually form the cluster for serving user 3 in cell
2. With the proposed iterative link removal technique and by
setting the threshold to be −100dBm/Hz, the improved version
of Algorithm 1 can narrow down the candidate BSs to only
the strongest 4 BSs after the 5th iteration, and the (1st, 3rd,
4th) strongest BSs after the 8th iteration, and finally the (1st,
3rd) strongest BSs after the 17th iteration.

2The strength of a BS seen by a user is evaluated by the maximum transmit
power from that BS compensated with the path-loss to the user.
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Fig. 3: Power evolutions of the strongest 8 BSs for user 3 in
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Fig. 4: User rates comparison with Lc = 8 and αk updated
according to proportional fairness criterion.

In Fig. 4, we compare the cumulative distributions of the
long-term average user rates between the proposed algorithm
and the user-centric clustering scheme where each user is
served by the strongest S BSs (S = 1, 2, 3, 4). We first run
the baseline “Strongest S BSs” schemes then evaluate the
corresponding backhaul requirement for each BS afterwards.
For the proposed algorithm, the explicit backhaul constraints
(Cmacro, Cpico) are set to be the average backhaul over the
macro-BSs and the pico-BSs respectively from the baseline.
Each curve in Fig. 4 is obtained by iteratively simulating the
corresponding scheme with fixed user priority weights αk’s
and updating the weights according to the proportional fairness
criterion. As we can see, by optimizing with explicit back-
haul constraints, the proposed algorithm achieves significant
performance gain. For instance, around 35% improvement is
obtained for the 50th-percentile user as compared with the
baseline where each user is served by the strongest 3 BSs.
Note that since the baseline algorithm connects each user
to an equal number of neighboring BSs, it inevitably favors
high-rate users. In contrast, the proposed algorithm can select
clusters for each user adaptively, and in particular can choose a
larger cluster for the low-rate users, thus achieving a significant
overall gain from a network utility perspective.

V. CONCLUSION

This paper proposes a novel �1-norm reweighting technique
for solving the utility maximization problem for a network
MIMO system with limited per-BS backhaul capacities. The
proposed algorithm dynamically selects the BS cluster and
designs the corresponding transmit beamformer for each user
in each time slot according to the given backhaul constraints.
To further reduce the computational complexity of the pro-
posed algorithm, we propose to iteratively remove those BSs
with negligible transmit power out of the candidate cluster
for each user, and remove those users with negligible rates
out of the user scheduling pool. Simulation results show that
by explicitly accounting for the backhaul constraints into the
utility maximization framework, the proposed algorithm can
fully utilize the backhaul resource and significantly improve
the system throughput as compared to the conventional user-
centric cluster scheme purely based on the channel strength.
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