
PERFORMANCE COMPARISON OF DATA-SHARING AND COMPRESSION STRATEGIES
FOR CLOUD RADIO ACCESS NETWORKS

Pratik Patil, Binbin Dai, and Wei Yu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario M5S 3G4, Canada

Emails:{ppatil, bdai, weiyu}@comm.utoronto.ca

ABSTRACT
This paper provides a system-level performance comparison
of two fundamentally different transmission strategies for the
downlink of a cloud radio access network. The two strategies,
namely the data-sharing strategy and the compression-based
strategy, differ in the way the limited backhaul is utilized.
While the data-sharing strategy uses the backhaul to carry raw
user data, the compression strategy uses the backhaul to carry
compressed beamformed signals. Although these strategies
have been individually studied in the literature, a fair compar-
ison of the two schemes under practical network settings is
challenging because of the complexity in jointly optimizing
user scheduling, beamforming, and power control for system-
level performance evaluation, along with the need to optimize
cooperation clusters for the data-sharing strategy and quanti-
zation noise levels for the compression strategy. This paper
presents an optimization framework for both the data-sharing
and compression strategies, while taking into account losses
due to practical modulation in terms of gap to capacity and
practical quantization in terms of gap to rate-distortion limit.
The main conclusion of this paper is that the compression-
based strategy, even with a simple fixed-rate uniform quan-
tizer, outperforms the data-sharing strategy under mediumto
high capacity backhauls. However, the data-sharing strat-
egy outperforms the compression strategy under low capacity
backhauls primarily because of the large quantization lossat
low backhaul capacity with compression.

1. INTRODUCTION

The ultra-dense cell deployment in the next generation (5G)
wireless networks calls for efficient management of inter-
cell interference. Cloud radio access network (C-RAN) has
emerged as a promising cellular architecture that allows joint
signal processing across base-stations (BSs) for interference
mitigation purposes whereby the BSs are connected to a
centralized cloud-computing based processor. This paper
compares the performance of two fundamentally different
transmission strategies for the downlink C-RAN, where the
BSs essentially act as relays in transmitting data from the
central processor to the remote users.

In the data-sharing strategy, the central processor shares
the data of each user to a cluster of BSs which then com-
pute the beamformed signals to be transmitted. In thecom-
pression strategy, the central processor itself computes the
beamformed signals to be transmitted by each BS, which
are then quantized and sent to the BSs through capacity-
limited backhaul links. Individually, both the data-sharing
and compression strategies have been studied in the context
of C-RAN. However, a fair system-level comparison between
the two strategies under practical network settings is still not
available in the literature due to the challenges in solving
the corresponding network optimization problems involving
user scheduling, beamforming, power control, along with the
optimization of clusters for the data-sharing strategy andthe
optimization of quantization noise levels for the compression
strategy. This paper tackles such a system-level performance
evaluation and tries to answer the question of under what
condition one strategy performs better than the other.

One contribution of this paper is that we model and take
into account loss due to practical modulation schemes in
terms of gap to capacity for both strategies. In addition, for
the compression strategy, we introduce a similar notion of gap
to rate-distortion limit to account for quantization losses due
to non-ideal quantizers used in practice. Further, we propose
a novel algorithm for the joint optimization of the beam-
formers and quantization noise levels for the compression
strategy based on an equivalence between weighted sum rate
(WSR) maximization and weighted minimum mean square
error (WMMSE) optimization.

We show through simulations on a heterogeneous cellu-
lar topology that whether one strategy is superior to the other
largely depends on the backhaul capacity constraint in the sys-
tem. If the available backhaul capacity is medium to high,
the compression strategy outperforms the data-sharing strat-
egy, even with a simple fixed-rate uniform scalar quantizer.
However, if the available backhaul capacity is low, the data-
sharing strategy outperforms the compression strategy. Intu-
itively, under low backhaul capacity the quantization noises
introduced in the compression strategy dominate the interfer-
ence, in which case it is better to just share the data directly
with a limited set of BSs rather than to compress.



We note that in our previous work [1], a comparison be-
tween the data-sharing strategy and the compression strategy
is made. But the system considered in [1] is limited to only a
sum backhaul constraint, instead of the per-BS backhaul con-
straints considered here. Moreover, in [1], the data-sharing
strategy does not select an optimized cluster of BSs for each
user; the compression strategy does not consider the joint op-
timization of the beamformers and the quantization noise lev-
els; further only a fixed user scheduling is assumed.

This paper restricts attention to linear precoding strategies
and does not consider nonlinear precoding based on dirty-
paper coding [2]. A hybrid between the data-sharing and
compression strategies is also possible and is discussed in[1].
For more references on the data-sharing strategy, we refer the
readers to [3] and for the compression strategy to [4].

2. SYSTEM MODEL

Consider a downlink C-RAN consisting ofL single-antenna
BSs servingK single-antenna remote users. AllL BSs are
connected to a central processor with capacity-limited back-
haul links. (We use the term backhaul, because the links
carry digital data. These links are sometimes referred to as
fronthaul links in the C-RAN literature, especially when they
carry compressed analog signals.) The capacity of the back-
haul link connectinglth BS to the central processor is denoted
byCl, l = 1, . . . , L. We assume one data stream per user, and
that the central processor has access to the data and perfect
CSI for allK users in the network.

Let xl denote the complex signal transmitted by BSl and
x ∈ C

L×1 = [x1, . . . , xL]
T be the aggregate signal from all

the BSs. The received signal at userk can be written as

yk = hH
k x+ zk, k = 1, 2, . . . ,K (1)

wherehk ∈ C
L×1 = [h1,k, . . . , hL,k]

T is the channel to the
userk from all the BSs, andzk is the additive complex Gaus-
sian noise with zero-mean and varianceσ2. Each BSl has a
transmit power budget denoted byPl. Let sk denote the data
of kth user distributed as complex Gaussian with zero-mean
and unit variance, which is available at the central processor.

3. DATA-SHARING STRATEGY

In the data-sharing strategy, a cluster of BSs locally form
beamformers to cooperatively serve each user. The data for
that user is replicated at all the participating BSs in the clus-
ter via the backhaul links. A crucial decision is to select an
appropriate cluster of BSs for each user for interference miti-
gation, while staying under the limited backhaul capacity.

Let the beamforming vector for userk from all the BSs be
wk ∈ C

L×1 = [w1,k, w2,k, . . . , wL,k]
T , wherewl,k denotes

the component of the beamformer from BSl. If BS l does
not participate in cooperatively serving userk, thenwl,k =

0. The beamformed signals transmitted from all the BSs can
then be written as

x =
K
∑

k=1

wksk. (2)

At userk, the signal-to-interference-plus-noise ratio (SINR)
can be expressed as

SINRk =
|hH

k wk|
2

∑

j 6=k |h
H
k wj |2 + σ2

. (3)

The information theoretical achievable rate for userk is re-
lated to SINR asRk = log(1+SINRk). However, this rate ex-
pression assumes Gaussian signaling, while in practice QAM
constellations are typically used for the Gaussian channelin
the moderate and high SINR regime. With moderate coding,
to achieve a given data rate we still need an SINR higher than
what is suggested above. This extra amount of power is usu-
ally captured by a so-called SNR gap. Denoting the gap by
Γm, we can rewrite the achievable rate for userk as

Rk = log

(

1 +
SINRk

Γm

)

. (4)

The optimization problem of finding the optimal set of
BS clusters and beamformers for the data-sharing scheme can
now be formulated as a WSR maximization problem under
per-BS power constraints and per-BS backhaul constraints:

maximize
wl,k

K
∑

k=1

αkRk (5a)

subject to

K
∑

k=1

|wl,k|
2 ≤ Pl, ∀l (5b)

K
∑

k=1

{

|wl,k|
2
}

Rk ≤ Cl, ∀l (5c)

whereαk denotes the priority weight associated with userk

and the indicator function
{

|wl,k|
2
}

denotes if BSl partic-
ipates in beamforming to userk, and if so, the user rateRk

is included in the backhaul constraintCl. The beamforming
coefficients are computed at the central processor, and are as-
sumed to be transmitted to the BSs without any error. We
neglect the backhaul consumption for transmitting the beam-
formers. This formulation considers joint design of BS clus-
tering and beamforming. It also implicitly does power con-
trol and user scheduling. This optimization problem is solved
repeatedly and the BS clusters are dynamically optimized in
each time slot as the priority weights are updated.

The presence of the backhaul constraint (5c) makes the
optimization problem challenging. In this paper, we follow
the approximation suggested in [3] to first write the indica-
tor function as al0 norm which is then approximated as a
weightedl1 norm as

{

|wl,k|
2
}

=
∥

∥|wl,k|
2
∥

∥

0
≈ βl,k|wl,k|

2, (6)



whereβl,k is a constant weight associated with BSl and user
k and is updated iteratively according to

βl,k =
1

|wl,k|2 + τ
, ∀ k, l (7)

for some regularization constantτ > 0 and|wl,k|
2 from the

previous iteration. This simplifies the constraint (5c) to

K
∑

k=1

βl,k|wl,k|
2Rk ≤ Cl, ∀l (8)

which is equivalent to a generalized power constraint, ifRk is
assumed fixed and heuristically chosen from the previous iter-
ation. The resulting optimization problem can then be solved
using an equivalence between the WSR maximization and the
WMMSE problem.

The only difference between the formulation (5) and that
in [3] is the gap factorΓm. We can easily verify that the
equivalence between WSR optimization and WMMSE ex-
tends even with the gapΓm. Below we summarize the over-
all algorithm for the optimization of the data-sharing strategy.
Though we do not have theoretical guarantee of its conver-
gence in general, it is observed to converge in simulations.

Algorithm 1 WSR maximization for data-sharing strategy

Initialization: {βl,k}, {wk}, {Rk};
Repeat:
1. For fixed{wk}, compute the MMSE receivers{uk} and

the corresponding MSE{ek} according to (11) and (9);

2. Update the MSE weights{ρk} according to (10);

3. For fixed{uk}, {ρk}, and{Rk} in (12c), find the optimal
transmit beamformer{wl,k} by solving (12);

4. Update{βl,k} as in (7). Compute the achievable rate
{Rk} according to (4);

Until convergence

The quantities used in the WMMSE approach in the above
algorithm are as follows. The mean square error (MSE) for
userk is defined as

ek = |uk|
2



Γm

(

∑

j 6=k

|hH
k wj |

2 + σ2

)

+ |hH
k wk|

2





− 2 Re{uH
k hH

k wk}+ 1.

(9)

The optimal MSE weightρk under fixed{wk} and{uk} is
given by

ρk = e−1

k . (10)

The optimal receive beamformeruk under fixed{wk} and
{ρk} is given by

uk =



Γm

(

∑

j 6=k

|hH
k wj |

2 + σ2

)

+ |hH
k wk|

2





−1

hH
k wk.

(11)

The optimization of transmit beamformers{wk} under fixed
{uk}, {ρk} and fixed{Rk} is the following quadratically
constrained quadratic programming (QCQP) problem:

minimize
wl,k

K
∑

k=1

wH
k Akwk − Re{bH

k wk} (12a)

subject to

K
∑

k=1

|wl,k|
2 ≤ Pl, ∀l (12b)

K
∑

k=1

Rkβl,k|wl,k|
2 ≤ Cl, ∀l (12c)

whereAk ∈ C
L×L andbk ∈ C

L×1 are defined to be

Ak =
∑

j 6=k

αjρj |uj |
2Γmhjh

H
j + αkρk|uk|

2hkh
H
k (13)

bk = 2αkρkukhk (14)

4. COMPRESSION STRATEGY

In the compression strategy, the central processor computes
the beamformed analog signals to be transmitted by the BSs.
These signals have to be compressed before they can be for-
warded to the corresponding BSs through the finite-capacity
backhaul links. The process of compression introduces quan-
tization noises; the quantization noise levels depend on back-
haul capacities.

In the data-sharing strategy, the beamformed signalx as
given by (2) is computed at the BSs. In the compression strat-
egy,x is computed at the central processor, then compressed,
sent over the backhaul links, and reproduced by the BSs. We
model the quantization process forx as

x̂ = x+ e, (15)

wheree is the quantization noise with covariance matrixQ ∈
C

L×L modelled as complex Gaussian and assumed to be in-
dependent of̂x. The received SINR for userk can then be
written as

SINRk =
|hH

k wk|
2

∑

j 6=k |h
H
k wj |2 + σ2 + |hH

k Qhk|
. (16)

This paper considers independent quantization at each BS, in
which caseQ is a diagonal matrix with diagonal entriesql.
(Multivariate compression is also possible and has been stud-
ied in [4].) Assuming an ideal vector quantizer, the quanti-
zation noise levelql and the backhaul capacityCl (from rate-
distortion theory) are related as

log

(

1 +

∑K

k=1
|wl,k|

2

ql

)

≤ Cl. (17)

However, the quantizers used in practice for compression can
be far from ideal. In order to capture these losses, we intro-
duce a notion of gap to rate-distortion limit. Following [5],



we note that operational distortion achieved by virtually all
practical quantizers at high resolution follow the relation

δ(R) = Γqvar(X)2−R. (18)

wherevar(X) is the variance of the signal being quantized,R

is the rate of quantizer, andΓq is a constant that depends on
the particular choice of quantizer. For example, for a fixed-
rate (uncoded) uniform scalar quantizer,Γq =

√
3π
2

, which
is around 2.72. For a uniform scalar quantizer followed by
variable-rate entropy coding we getΓq = πe

6
which is around

1.42. Note thatΓq = 1 corresponds to the distortion achiev-
able by the best possible vector quantization scheme. Ac-
counting for this, we can rewrite the relation above as

log

(

1 +
Γq

∑K

k=1
|wl,k|

2

ql

)

≤ Cl. (19)

Note that
∑K

k=1
|wl,k|

2 is the power of the signal that is quan-
tized for BSl. The achievable rate for userk, Rk, is again as
given by (4).

The design of the compression strategy can now be stated
as a WSR maximization problem over the transmit beam-
formers and the quantization noise levels:

maximize
wl,k,ql

K
∑

k=1

αkRk (20a)

subject to
K
∑

k=1

|wl,k|
2 −

2Cl − 1

Γq

ql ≤ 0, ∀l (20b)

K
∑

k=1

|wl,k|
2 + ql ≤ Pl, ∀l (20c)

The constraint (20b) is just a reformulation of (19) while the
constraint (20c) is the power constraint on the compressed
signalxl. Finding the globally optimal solution to the above
problem is challenging. An iterative approach based on the
majorize-minimization (MM) algorithm has been suggested
in [4]. The algorithm in [4] transformswkw

H
k into a non-

negative definite matrix variableRk and ignores the rank con-
straint onRk in the optimization. In this paper, we propose
a novel way to solve (20) by reformulating it as an equiva-
lent WMMSE problem and then using the block coordinate
descent method between the transmit beamformers{wk} and
the quantization noise levels{ql}, the receive beamformers
{uk}, and the MSE weights{ρk}. The algorithm can be
shown to reach a stationary point of (20). The explicit equiv-
alence is not stated here for brevity. The numerical procedure
is presented as Algorithm 2.

In Algorithm 2, the optimization of the transmit beam-
formers{wk} and the quantization noise levels{ql} under

Algorithm 2 WSR maximization for compression strategy

Initialization: {wk}, {ql};
Repeat:
1. For fixed{wk}, {ql}, compute the MMSE receivers{uk}

and the corresponding MSE{ek} according to (11) and
(9) with σ2 replaced byσ2+ |hH

k Qhk| in both equations;

2. Update the MSE weights{ρk} according to (10);

3. For fixed{uk} and{ρk}, find the optimal transmit beam-
formers{wk} and quantization noise levels{ql} by solv-
ing the convex optimization problem (21);

Until convergence

fixed{uk} and{ρk} is the following convex program:

min
wl,k,ql

K
∑

k=1

wH
k Akwk − Re{bH

k wk}+ αkρk|uk|
2Γm|hH

k Qhk|

(21a)

s.t.
K
∑

k=1

|wl,k|
2 −

2Cl − 1

Γq

ql ≤ 0, ∀l (21b)

K
∑

k=1

|wl,k|
2 + ql ≤ Pl, ∀l (21c)

whereAk andbk are as defined in (13) and (14).
We further observe that the convex optimization prob-

lem (21) has a particular structure that can be exploited.
Observe that the two constraints (21b) and (21c) provide a
lower and an upper bound on{ql}, respectively. Since the
objective (21a) is monotonically decreasing in{ql}, we can
replace the inequality with equality in the constraint (21b)
and substitute{ql} from (21b) into the objective (21a) and
the constraint (21c). This results in a QCQP problem in only
a single set of variables{wk}, which can be efficiently solved
by standard solvers.

5. PERFORMANCE EVALUATION

We consider a 7-cell wrapped-around two-tier heterogeneous
network with simulation parameters as listed in Table 1. All
the macro-BSs and pico-BSs are connected to a centralized
processor by capacity-limited backhaul links. We compare
the performance of the two strategies under varying backhaul
capacities. The combined background noise and interference
caused by two tiers of cells outside the 7-cells is estimatedto
be -150 dBm/Hz. We assume an SNR gap ofΓm = 9 dB
(corresponding to uncoded QAM transmission) and a gap to
rate-distortion limit ofΓq = 4.3 dB (corresponding to un-
coded fixed-rate uniform scalar quantizer). At each time slot,
we solve the respective network optimization problems and
update the weights in WSR maximization according to the
proportional fair criterion.



Channel bandwidth 10 MHz
Distance between cells 0.8 km
Number of users/cell 30

Number of macro-BSs/cell 1

Number of pico-BSs/cell 3

Max. Tx power at macro-BS 43 dBm
Max. Tx Power at pico-BS 30 dBm

Antenna gain 15 dBi
Background noise −169 dBm/Hz

Path loss from macro-BS to user128.1 + 37.6 log
10
(d)

Path loss from pico-BS to user 140.7 + 36.7 log
10
(d)

Log-normal shadowing 8 dB
Rayleigh small scale fading 0 dB

SNR gap (Γm) 9 dB
Rate-distortion gap (Γq) 4.3 dB

Table 1. Simulation Parameters

Fig. 1 shows the cumulative distribution of user rates un-
der varying backhaul capacities for both strategies. For ref-
erence, we also include the full cooperation case with infinite
backhaul capacity and the baseline scheme of no cooperation
with each user connected to the strongest BS. When the back-
haul capacity is low at 40 Mbps/macro-BS and 20 Mbps/pico-
BS, the data-sharing strategy outperforms the compression
strategy. The 50-percentile rate for the data-sharing strat-
egy is about 3 times that of the compression strategy. If we
double the backhaul capacity to 80 Mbps/macro-BS and 40
Mbps/pico-BS, the compression strategy becomes compara-
ble to the data-sharing strategy and both have about the same
50-percentile user rates. At this operating point, the sum
backhaul capacity is about 6 times that of the average sum
rate per cell. We also observe that the compression strategy
favours low rate users while the data-sharing strategy favours
high rate users. A reason for this is that the compression strat-
egy under low backhaul capacity is limited by the quantiza-
tion noises which are about the same for all the BS signals
resulting in more uniform user rates.

We observe that with moderate-to-high backhaul capacity
of 160 Mbps/macro-BS and 80 Mbps/pico-BS, the compres-
sion strategy outperforms the data-sharing strategy with the
50-percentile rate for the compression strategy more than 2.5
times than that of data-sharing. Increasing the backhaul inthis
regime improves the compression strategy drastically, while
the data-sharing strategy sees only a moderate increase. This
is because, at low backhaul capacity, the performance of the
compression strategy is limited by the quantization noises.
An increase in backhaul capacity reduces the quantization
noise levels exponentially, while a similar increase in the
backhaul capacity does not buy as much for the data-sharing
strategy. Finally with a backhaul of 240 Mbps/macro-BS
and 120 Mbps/pico-BS, the compression strategy performs
close to the full cooperation limit, while for the data-sharing
strategy, backhaul capacities of 1200 Mbps/macro-BS and
600 Mbps/pico-BS are needed to get as close.
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Fig. 1. Comparison of cumulative distribution of user rates for
the data-sharing and compression strategies.

6. CONCLUSIONS

This paper compares two fundamentally different strategies,
the data-sharing and the compression strategy, for the down-
link C-RAN under realistic network settings considering var-
ious practical aspects. Our main conclusion is that the back-
haul capacity constraint is crucial in deciding which strategy
to adopt. The compression strategy offers better user ratesfor
moderate-to-high backhaul capacity, due to its ability to have
full cooperation before quantization. But it suffers from high
quantization loss at low backhaul capacity in which case it is
better to do data-sharing with limited cooperation cluster.
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