PERFORMANCE COMPARISON OF DATA-SHARING AND COMPRESSION STRATEGIES
FOR CLOUD RADIO ACCESSNETWORKS

Pratik Patil, Binbin Dai, and W& Yu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario M5S 3G4, Canada
Emails: { ppatil, bdai, weiyg@comm.utoronto.ca

ABSTRACT In the data-sharing strategy, the central processor shares
This paper provides a system-level performance comparisahe data of each user to a cluster of BSs which then com-
of two fundamentally different transmission strategiestfie  pute the beamformed signals to be transmitted. Inctme-
downlink of a cloud radio access network. The two strategiegression strategy, the central processor itself computes the
namely the data-sharing strategy and the compressiomtbaskeeamformed signals to be transmitted by each BS, which
strategy, differ in the way the limited backhaul is utilized are then quantized and sent to the BSs through capacity-
While the data-sharing strategy uses the backhaul to casry ralimited backhaul links. Individually, both the data-shmyi
user data, the compression strategy uses the backhautyo caand compression strategies have been studied in the context
compressed beamformed signals. Although these strategie6C-RAN. However, a fair system-level comparison between
have been individually studied in the literature, a fair g@am  the two strategies under practical network settings isrsii
ison of the two schemes under practical network settings iavailable in the literature due to the challenges in solving
challenging because of the complexity in jointly optimgin the corresponding network optimization problems invadvin
user scheduling, beamforming, and power control for systenmuser scheduling, beamforming, power control, along with th
level performance evaluation, along with the need to ozémi optimization of clusters for the data-sharing strategy toed
cooperation clusters for the data-sharing strategy andtgua optimization of quantization noise levels for the compi@ss
zation noise levels for the compression strategy. This papestrategy. This paper tackles such a system-level perfarenan
presents an optimization framework for both the data-sigari evaluation and tries to answer the question of under what
and compression strategies, while taking into accountkss condition one strategy performs better than the other.
due to practical modulation in terms of gap to capacity and One contribution of this paper is that we model and take
practical quantization in terms of gap to rate-distortionil.  into account loss due to practical modulation schemes in
The main conclusion of this paper is that the compressionterms of gap to capacity for both strategies. In addition, fo
based strategy, even with a simple fixed-rate uniform guanthe compression strategy, we introduce a similar notiorapf g
tizer, outperforms the data-sharing strategy under medlium to rate-distortion limit to account for quantization losshie
high capacity backhauls. However, the data-sharing strate non-ideal quantizers used in practice. Further, we mepo
egy outperforms the compression strategy under low capacita novel algorithm for the joint optimization of the beam-
backhauls primarily because of the large quantization dss formers and quantization noise levels for the compression

low backhaul capacity with compression. strategy based on an equivalence between weighted sum rate
(WSR) maximization and weighted minimum mean square
1. INTRODUCTION error (WMMSE) optimization.

We show through simulations on a heterogeneous cellu-
The ultra-dense cell deployment in the next generation (5Gar topology that whether one strategy is superior to themth
wireless networks calls for efficient management of interdargely depends on the backhaul capacity constraint injhe s
cell interference. Cloud radio access network (C-RAN) hasem. If the available backhaul capacity is medium to high,
emerged as a promising cellular architecture that allows jo the compression strategy outperforms the data-shariag str
signal processing across base-stations (BSs) for interfer egy, even with a simple fixed-rate uniform scalar quantizer.
mitigation purposes whereby the BSs are connected to ldowever, if the available backhaul capacity is low, the data
centralized cloud-computing based processor. This papaharing strategy outperforms the compression stratedgy- In
compares the performance of two fundamentally differenttively, under low backhaul capacity the quantization eeis
transmission strategies for the downlink C-RAN, where thdntroduced in the compression strategy dominate the eterf
BSs essentially act as relays in transmitting data from thence, in which case it is better to just share the data dyrectl
central processor to the remote users. with a limited set of BSs rather than to compress.



We note that in our previous work [1], a comparison be-0. The beamformed signals transmitted from all the BSs can
tween the data-sharing strategy and the compressiongstratethen be written as
is made. But the system considered in [1] is limited to only a K
sum backhaul constraint, instead of the per-BS backhaul con x= Z WhkSk- @
straints considered here. Moreover, in [1], the data-slgari ) k=L ] ]
strategy does not select an optimized cluster of BSs for eacdht Userk, the signal-to-interference-plus-noise ratio (SINR)
user; the compression strategy does not consider the joint 0¢2n P& expressed as
timization of the be_amformers and th_e qyantization noige le |hf w2
els; further only a fixed user scheduling is assumed. SINR;, = > WA w,[2 1 o2 (3)

This paper restricts attention to linear precoding stiateg g7k R T
and does not consider nonlinear precoding based on dirtyFhe information theoretical achievable rate for ukes re-
paper coding [2]. A hybrid between the data-sharing andated to SINR ag?;, = log(1+SINR;,). However, this rate ex-
compression strategies is also possible and is discus§gld in pression assumes Gaussian signaling, while in practice QAM
For more references on the data-sharing strategy, we refer tconstellations are typically used for the Gaussian chaimnel
readers to [3] and for the compression strategy to [4]. the moderate and high SINR regime. With moderate coding,
to achieve a given data rate we still need an SINR higher than
what is suggested above. This extra amount of power is usu-
ally captured by a so-called SNR gap. Denoting the gap by
I',., we can rewrite the achievable rate for ubers

2. SYSTEM MODEL

Consider a downlink C-RAN consisting @f single-antenna
BSs servingK single-antenna remote users. AlIBSs are SINR,
connected to a central processor with capacity-limitedbac Ry, = log (1 t ) (4)
haul links. (We use the term backhaul, because the links "

carry digital data. These links are sometimes referred to as The optimization problem of finding the optimal set of
fronthaul links in the C-RAN literature, especially whemyh BS clusters and beamformers for the data-sharing scheme can
carry compressed analog signals.) The capacity of the backow be formulated as a WSR maximization problem under
haul link connectingth BS to the central processor is denotedper-BS power constraints and per-BS backhaul constraints:

byC;, 1 =1,..., L. We assume one data stream per user, and X

that the central processor has access to the data and perfect maximize Z anRy (5a)
CSil for all K users in the network. wi —
Let z; denote the complex signal transmitted by Bshd K

x € CLX1 = [z,,. - ,xL].T be the aggregate gignal from all subject to Z w2 < B, VI (5b)
the BSs. The received signal at ugezan be written as e
=hf = K 1 =

Yr = hp X+ 2, k_1727"'7 ( ) Z {|wl,k|2}RkSOla i (5c)
k=1

wherehy, € CL*t = [hy g, ...,k x]T is the channel to the

userk from all the BSs, and;, is the additive complex Gaus- Wherea;, denotes the priority weight associated with user
sian noise with zero-mean and variande Each BS has a and the indicator function {|w; x|*} denotes if BS partic-
transmit power budget denoted BY. Let s, denote the data iPates in beamforming to usét and if so, the user rat&,
of kth user distributed as complex Gaussian with zero-meal$ included in the backhaul constraifif. The beamforming

and unit variance, which is available at the central pramess Ccoefficients are computed at the central processor, andsare a
sumed to be transmitted to the BSs without any error. We

neglect the backhaul consumption for transmitting the beam
formers. This formulation considers joint design of BS elus

tering and beamforming. It also implicitly does power con-

In the data-sharing stratggy, a cluster of BSs locally formtrol and user scheduling. This optimization problem is edlv
beamformers to cooperatively serve each user. The data for

that user is replicated at all the participating BSs in thes<l Pepeat.edly and the BS plu;ters are dynamically optimized in
. . : o2 each time slot as the priority weights are updated.
ter via the backhaul links. A crucial decision is to select an .
) . S The presence of the backhaul constraint (5¢) makes the
appropriate cluster of BSs for each user for interferende mi Lo . .
ation, while staying under the limited backhaul capacit optimization problem challenging. In this paper, we follow
9 ' ying Pacty: e approximation suggested in [3] to first write the indica-

Let ﬂzi 1beamform|ng vector for u;krfrom allthe BSs be tor function as a, norm which is then approximated as a
wy € C = [w1,k, Wok,...,wr k| , Wherew, , denotes weightedl, norm as
the component of the beamformer from BSIf BS | does !
not participate in cooperatively serving userthenw; = {lwik?} = |||wlyk|2H0 ~ Br|wikl?, (6)

3. DATA-SHARING STRATEGY



whereg, . is a constant weight associated with B&d user  The optimization of transmit beamformefs, } under fixed

k and is updated iteratively according to {ux}, {pr} and fixed{Ry;} is the following quadratically
1 constrained quadratic programming (QCQP) problem:
Bik=7—5—— Vkl (7
|wl,k\ +T K . .
for some regularization constant> 0 and |w; ;| from the e ;W’f Arwy — Refby wi} (122)
previous iteration. This simplifies the constraint (5c) to ]_(
K subject to k| < P, VI (12b)
Zﬂl,k|wl,k|23k <C, Vi (8) ;
k=1 K
which is equivalent to a generalized power constrain®fis Z RiBixlwiil> <G, VI (12¢c)
assumed fixed and heuristically chosen from the previous ite k=1

atipn. The re;ulting optimization problem can then'be S'blvewhereAk € CEXL andb, € CEX! are defined to be

using an equivalence between the WSR maximization and the

WMMSE problem. Ay = Z a;pjlus*Trhyhl’ + agprlug[*hihy! (13)
The only difference between the formulation (5) and that j£k

in [3] is the gap factod’,,,. We can easily verify that the

equivalence between WSR optimization and WMMSE ex-

tends even with the gap,,,. Below we summarize the over-

all algorithm for the optimization of the data-sharing tgy.

Though we do not have theoretical guarantee of its conver

gence in general, it is observed to converge in simulations.

by, = 2aprurhy (14)

4. COMPRESSION STRATEGY

n the compression strategy, the central processor compute
the beamformed analog signals to be transmitted by the BSs.
These signals have to be compressed before they can be for-
warded to the corresponding BSs through the finite-capacity
backhaul links. The process of compression introduces-quan

Algorithm 1 WSR maximization for data-sharing strategy
Initialization: {31}, {wx}, {Rx};

Repeat: tization noises; the quantization noise levels depend ok-ba
1. For fixed{w;}, compute the MMSE receivefs..} and  hay| capacities.
the corresponding MSEe,, } according to (11) and (9); In the data-sharing strategy, the beamformed signas
2. Update the MSE weights, } according to (10); given by (2) is computed at the BSs. In the compression strat-
3. For fixed{us}, {pr}, and{R;} in (12¢), find the optimal egy,x is computed at the_: central processor, then compressed,
transmit beamformefuw, ; } by solving (12); sent over the backhaul links, and reproduced by the BSs. We

. ) model the quantization process foas
4. Update{s,} as in (7). Compute the achievable rate

{R}} according to (4); X =x+e, (15)

Until convergence wheree is the quantization noise with covariance matgixc

N ) ] CE*E modelled as complex Gaussian and assumed to be in-
The quantities used in the WMMSE approach in the abov‘%iependent ok. The received SINR for usér can then be
algorithm are as follows. The mean square error (MSE) fo{yritten as

userk is defined as

er = |ug|? Fm(Z [hifw;|? + Uz) + [y we|? D itk Ihifw;|? + 02 + [hf Qhy|
J#k ©) This paper considers independent quantization at eachnBS, i
— 2 Re{ufhf w;,} + 1. which caseQ is a diagonal matrix with diagonal entrigs
(Multivariate compression is also possible and has beeh stu
ied in [4].) Assuming an ideal vector quantizer, the quanti-

by wy|?

SINR;, = (16)

The optimal MSE weighp;, under fixed{w,} and{us} is

given by . zation noise levey; and the backhaul capacity; (from rate-
Pk = € - (10)  distortion theory) are related as
The optimal receive beamformes, under fixed{wy} and X )
{px} is given by log [ 1+ = [k <. (17)
1 qi
ug = [ Thn ( Z |h,{,{wj 1>+ 02> + |hfwy)? hfwy. However, the quantizers used in practice for compression ca
£k be far from ideal. In order to capture these losses, we intro-

(11) duce a notion of gap to rate-distortion limit. Following [5]



we note that operational distortion achieved by virtually a Algorithm 2 WSR maximization for compression strategy

practical quantizers at high resolution follow the relatio Initialization: {wy}, {q:};
Repeat:
S(R) = Tgvar(X)2~ . (18) 1. Forfixed{w;},{q}, compute the MMSE receivefsi;, }
and the corresponding MSEe; } according to (11) and
wherevar(X) is the variance of the signal being quantiz&d, (9) with o2 replaced byr? + |hZ Qhy | in both equations;

is the rate of quantizer, arid, is a constant that depends on o Update the MSE weight&p;,} according to (10);
the particular choice of quantizer. For example, for a fixed-

rate (uncoded) uniform scalar quantizéy, = @ which
is around 2.72. For a uniform scalar quantizer followed by
variable-rate entropy coding we def = % which is around

1.42. Note thal’; = 1 corresponds to the distortion achiev-
able by the best possible vector quantization scheme. Ac-
counting for this, we can rewrite the relation above as

For fixed{uy } and{px}, find the optimal transmit beam-
formers{w} and quantization noise leve{g; } by solv-
ing the convex optimization problem (21);

Until convergence

fixed {u } and{py} is the following convex program:

tog [ 1.4 T Dz loal®) 19 min S wh 1 o A
og 0 < (. wrmr;l Zwk Apwy, — Re{by wi} + appr|ur| T, by Qhy|
T k=1
K , . ) (21a)
Note thaty~,"_, |w; x|* is the power of the signal that is quan- K o
ti;ed for BSI. The achievable rate for usky Ry, is againas g, Z lw i |? — Zibit q <0, VI (21b)
given by (4). — Ly
The design of the compression strategy can now be stated K
as a WSR maximization problem over the transmit beam- Z lwiel> +q@ < P, Vi (21c)
formers and the quantization noise levels: k=1
K whereA ; andby are as defined in (13) and (14).
maximize ZakRk (20a) We further observe that the convex optimization prob-
Wi, ,q1 Pt lem (21) has a particular structure that can be exploited.

Observe that the two constraints (21b) and (21c) provide a

K

subject to Z g 1|2 — 20 —1 @ <0, VI (20b) lowerand an upper bound o}, respectively. Since the
= Iy objective (21a) is monotonically decreasing{ip}, we can
K replace the inequality with equality in the constraint (R1b
Z lwik2+q <P, VI (20c)  and substitute{q;} from (21b) into the objective (21a) and
1 the constraint (21c). This results in a QCQP problem in only

a single set of variablefsw;, }, which can be efficiently solved

The constraint (20b) is just a reformulation of (19) while th by standard solvers.
constraint (20c) is the power constraint on the compressed
signalz;. Finding the globally optimal solution to the above 5 PERFORMANCE EVALUATION
problem is challenging. An iterative approach based on the
majorize-minimization (MM) algorithm has been suggestedye consider a 7-cell wrapped-around two-tier heterogesmieou
in [4]. The algorithm in [4] transformsv,w/’ into a non-  network with simulation parameters as listed in Table 1. All
negative definite matrix variable,, and ignores the rank con- the macro-BSs and pico-BSs are connected to a centralized
straint onRy, in the optimization. In this paper, we propose processor by capacity-limited backhaul links. We compare
a novel way to solve (20) by reformulating it as an equivathe performance of the two strategies under varying badkhau
lent WMMSE problem and then using the block coordinatecapacities. The combined background noise and interferenc
descent method between the transmit beamforfwis and  caused by two tiers of cells outside the 7-cells is estimated
the quantization noise levelg) }, the receive beamformers pe -150 dBm/Hz. We assume an SNR gapgf = 9 dB
{uy}, and the MSE weightgp;}. The algorithm can be (corresponding to uncoded QAM transmission) and a gap to
shown to reach a stationary point of (20). The explicit equiv rate-distortion limit of ', = 4.3 dB (corresponding to un-
alence is not stated here for brevity. The numerical pro@du coded fixed-rate uniform scalar quantizer). At each timg slo
is presented as Algorithm 2. we solve the respective network optimization problems and

In Algorithm 2, the optimization of the transmit beam- update the weights in WSR maximization according to the
formers{w;} and the quantization noise levelg;} under proportional fair criterion.



Channel bandwidth 10 MHz

Distance between cells 0.8 km PR
Number of users/cell 30 09 x
Number of macro-BSs/cell 1 S 08
Number of pico-BSs/cell 3 g,
Max. Tx power at macro-BS 43 dBm Eg
Max. Tx Power at pico-BS 30 dBm £ 08
Antenna gain 15 dBi £ o0s
H = Strongest 1 BS (98, 52) Mbps
Background noise —169 dBm/Hz B < Data Sharing (40, 20) Mbps
Path loss from macro-BS to user128.1 + 37.6 log,,(d) 2 -/ - Compression (40, 20) Mbps
ico- S 03 —¥— Data Sharing (80, 40) Mbps
Path loss from pico BS.to usell 140.7 + 36.7 log,(d) § % - Campression (80 40) Mbpe
Log-normal shadowing 8 dB O 02 —E— Data Sharing (240, 120) Mbps
I i — El = Compression (240, 120) Mbps
Rayleigh small scale fading 0dB oL Data Sharing (1200, 600) Mons|
SNR gap rm) 9dB Full Cooperation
Rate-distortion gapl{,) 4.3dB 0 2 s p

Long-Term Average User Rates (Mbps)
Table 1. Simulation Parameters
Fig. 1. Comparison of cumulative distribution of user rates for

. . o the data-sharing and compression strategies.
Fig. 1 shows the cumulative distribution of user rates un- g P g

der varying backhaul capacities for both strategies. For re

erence, we also include the full cooperation case with it&ini 6. CONCLUSIONS

backhaul capacity and the baseline scheme of no cooperation

with each user connected to the strongest BS. When the backhis paper compares two fundamentally different strategie
haul capacity is low at 40 Mbps/macro-BS and 20 Mbps/picothe data-sharing and the compression strategy, for the-down
BS, the data-sharing strategy outperforms the compressidiik C-RAN under realistic network settings considering-va
strategy. The 50-percentile rate for the data-sharing-straious practical aspects. Our main conclusion is that the-back
egy is about 3 times that of the compression strategy. If wéaul capacity constraint is crucial in deciding which st
double the backhaul capacity to 80 Mbps/macro-BS and 4P adopt. The compression strategy offers better userfates
Mbps/pico-BS, the compression strategy becomes compargioderate-to-high backhaul capacity, due to its abilitydweh
ble to the data-sharing strategy and both have about the sarf8l cooperation before quantization. But it suffers frofgth
50-percentile user rates. At this operating point, the surfluantization loss at low backhaul capacity in which case it i
backhaul capacity is about 6 times that of the average sufetter to do data-sharing with limited cooperation cluster
rate per cell. We also observe that the compression strategy

favours low rate users while the data-sharing strategyuisvo REFERENCES

high rate users. A reason for this is that the compressiat: str

egy under low backhaul capacity is limited by the quantizalll P- Patiland W. Yu, “Hybrid compression and message-
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